Probability in Complex Physical Systems
In Honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathem
Gentz, Barbara / König et al, Wolfgang
Erschienen am
01.04.2014
Beschreibung
InhaltsangabeLaudatio - The Mathematical Work of Jürgen Gärtner - Hollander.- Part I The Parabolic Anderson Model.- The Parabolic Anderson Model with Long Range Basic Hamiltonian and Weibull Type Random Potential. S. Molchanov and H. Zhang.- Parabolic Anderson Model with Voter Catalysts: Dichotomy in the Behavior of Lyapunov Exponents. G. Maillard, T. Mountford and S. Schöpfer.- Precise Asymptotics for the Parabolic Anderson Model with a Moving Catalyst or Trap. A. Schnitzler and T. Wolff.- Parabolic Anderson Model with a Finite Number of Moving Catalysts. F. Castell, O. Gün and G. Maillard.- Survival Probability of a Random Walk Among a Poisson System of Moving Traps. A. Drewitz, J. Gärtner, A. F. Ramírez, R. Sun.- Quenched Lyapunov Exponent for the Parabolic Anderson Model in a Dynamic Random Environment. J. Gärtner, F. den Hollander and G. Maillard.- Asymptotic Shape and Propagation of Fronts for Growth Models in Dynamic Random Environment. H. Kesten, A.F. Ramírez and V. Sidoravicius.- The Parabolic Anderson Model with Acceleration and Deceleration. W. König and S. Schmidt.- A Scaling Limit Theorem for the Parabolic Anderson Model with Exponential Potential - H. Lacoin and P. Mörters.- Part II Self-interacting Random Walks and Polymers.- The strong Interaction Limit of Continuous-time Weakly Self-avoiding Walk. D. C. Brydges, A. Dahlqvist, and G. Slade.- Copolymers at Selective Interfaces: Settled Issues and Open Problems. F. Caravenna, G. Giacomin and F.L. Toninelli.- Some Locally Self-interacting Walks on the Integers. A. Erschler, B. Tóth and W. Werner.- Stretched Polymers in Random Environment. D. Ioffe and Y. Velenik.- Part III Branching Processes.- Multiscale Analysis: Fisher-Wright Diffusions with Rare Mutations and Selection, Logistic Branching System. D.A. Dawson and A. Greven.- Properties of States of Super-a-stable Motion with Branching of Index 1+ß. K. Fleischmann, L. Mytnik, and V Wachtel.- Part IV Miscellaneous Topics in Statistical Mechanics.- A Quenched Large Deviation Principle and a Parisi Formula for a Perceptron Version of the Grem. E. Bolthausen and N. Kistlerr.- Metastability: from Mean Field Models to SPDEs. A. Bovier.- Hydrodynamic Limit for the V f Interface Model via Two-scale Approach. T. Funaki.- Statistical Mechanics on Isoradial Graphs. C. Boutillier and B. de Tilière.