Beschreibung
Introduces basic principles and mechanisms, covers new developments, and provides a different view of the main facets of bioelectrosynthesisBioelectrosynthesis represents a promising approach for storing renewable energy or producing target chemicals in an energy-sustainable and low-cost way. This timely and important book systemically introduces the hot issues surrounding bioelectrosynthesis, including potential value-added products via bioelectrochemical system, reactor development of bioelectrosynthesis, and microbial biology on biofilm communities and metabolism pathways. It presents readers with unique viewpoints on basic principles and mechanisms along with new developments on reactor and microbial ecology.Beginning with a principle and products overview of bioelectrosynthesis, Bioelectrosynthesis: Principles and Technologies for Value-Added Products goes on to offer in-depth sections on: biogas production and upgrading technology via bioelectrolysis; organic synthesis on cathodes; chemical products and nitrogen recovery; external electron transfer and electrode material promotion; and the microbiology of bioelectrosynthesis. Topics covered include: hydrogen production from waste stream with microbial electrolysis cell; microbial electrolysis cell; inorganic compound synthesis in bioelectrochemical system; microbial growth, ecological, and metabolic characteristics in bioelectrosynthesis systems; microbial metabolism kinetics and interactions in bioelectrosynthesis system; and more.* Comprehensively covers all of the key issues of biolelectrosynthesis* Features contributions from top experts in the field* Examines the conversion of organic wastes to methane via electromethanogenesis; methane production at biocathodes; extracellular electron transport of electroactive biofilm; and moreBioelectrosynthesis: Principles and Technologies for Value-Added Products will appeal to chemists, electrochemists, environmental chemists, water chemists, microbiologists, biochemists, and graduate students involved in the field.
Autorenportrait
Dr. Aijie Wang is the professor and director of School of Municipal & Environmental Engineering of Harbin Institute of Technology, and Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences (CAS). Her current interests are the wastewater biological treatment and resource recovery, bio(electro)degradation of environmental pollutants and corresponding mechanisms as well as the bioelectrochemical stimulated technology for recalcitrant compounds biodegradation. She has published more than 200 SCI-indexed papers and 3 monographs together with 40 granted Chinese patents. She is the recipient of several national academic awards, including a Distinguished Professor of Yangtze River Scholar (MOE of China) and a National Outstanding Youth Science Fund Award (NSFC). She is the member of "One-Hundred Talented" program of CAS, and the "Youth Science and Technology Innovation Leadership" of MOST of China. She is also the awardee of the National Science and Technology Progress Awards in 2004, 2007 and 2010 as well as China Industry-Academic Cooperation and Innovation Award in 2015. Meanwhile, she is also a Fellow of International Water Association. Dr. Wenzong Liu is an associate professor of RCEES, CAS since 2013. He received his B.S. in Bioengineering in 2005 from the University of Petroleum of China, and obtained his M.S. and Ph.D degree of Environmental Science and Engineering in 2007 and 2011 from Harbin Institute of Technology. His research interests are the electron transfer mechanism of bioelectrochemical degradation of organic pollutants, microbial ecology related to bioenergy and bioresource recovery. He has published more than 60 peer-reviewed papers. Dr. Liu has received several awards, including "Young Ambassador to America Society for Microbiology" in China (2012-2015), "Young Technology Innovation of Microbial Ecology Award" in 2012. Dr. Bo Zhang is an assistant professor at RCEES, CAS. He obtained his B.S. degree in environmental engineering from Nanjing University in 2007 and his M.S. degree and Ph.D. degree from Clarkson University and University of Wisconsin, Milwaukee, respectively. He then worked as a postdoc at RCEES in Prof. Aijie Wang's group. His research interests include bioelectrochemical systems and extracellular electron transfer in engineered and natural systems. Mr. Weiwei Cai is a PhD student in Harbin Institute of Technology. His main interests focus on Electron transfer of bioelectrochemical methane production; In situ accelerating and upgrading methane with aid of bioelectrochemistry; ecology dynamics related to bio(electro)-methanogenesis from wastes and wastewater; Molecular mechanism of bio-methanogenesis coupling emerging techniques (conductive carriers, bioelectrochemistry, novel nanomaterials and quorum sensing).
Leseprobe